Existence of Periodic Solutions for a Class of Second-Order Neutral Differential Equations with Multiple Deviating Arguments

نویسندگان

  • CHENGJUN GUO
  • RAVI P. AGARWAL
  • Chengjun Guo
  • Donal O’Regan
  • Ravi P. Agarwal
چکیده

Using Kranoselskii fixed point theorem and Mawhin’s continuation theorem we establish the existence of periodic solutions for a second order neutral differential equation with multiple deviating arguments. 1This project is supported by grant 10871213 from NNSF of China, by grant 06021578 from NSF of Guangdong. 154 Chengjun Guo, Donal O’Regan & Ravi P. Agarwal CUBO 12, 3 (2010)

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Periodic Solutions for a Second-order Neutral Differential Equation with Variable Parameter and Multiple Deviating Arguments

By employing the continuation theorem of coincidence degree theory developed by Mawhin, we obtain periodic solution for a class of neutral differential equation with variable parameter and multiple deviating arguments.

متن کامل

Existence and Uniqueness of Anti-Periodic Solutions for Nonlinear Higher-Order Differential Equations with Two Deviating Arguments

In this paper, we use the Leray–Schauder degree theory to establish new results on the existence and uniqueness of anti-periodic solutions for a class of nonlinear nth-order differential equations with two deviating arguments of the form x(t) + f(t, x(n−1)(t)) + g1(t, x(t− τ1(t))) + g2(t, x(t− τ2(t))) = e(t). As an application, we also give an example to demonstrate our results. AMS Subject Cla...

متن کامل

Existence of Positive Periodic Solutions to Third-order Delay Differential Equations

Using the continuation theorem of coincidence degree theory and analysis techniques, we establish criteria for the existence of periodic solutions to the following third-order neutral delay functional differential equation with deviating arguments ... x (t) + aẍ(t) + g(ẋ(t− τ(t))) + f(x(t− τ(t))) = p(t). Our results complement and extend known results and are illustrated with examples.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010